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Abstract: The Adomian decomposition method (ADM) is a creative and effective method for exact solution of functional equations of various 

kinds.  Adomian decomposition method solves wide class of linear and non-linear, ordinary or partial differential equations. This paper 

presents the Adomian decomposition method for the solution of nonlinear boundary value problem using Neumann boundary conditions. In 

this approach, the solution is found in the form of a convergent power series with easily computed components. To show the efficiency of the 

method, numerical results and graphical representation of results are presented and compared with exact solution. 
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1. INTRODUCTION 
The Adomian Decomposition Method [1-3] has been utilized 

for the solution of linear and nonlinear ordinary and partial 

differential equations. Some authors known as Kaya [4], El-

Sayed, Biazar Hashim, and Lesnic [5-7] examined some 

different scientific models analytically and numerically. 

Another two writers named Sweilam and Khader [8-10] used 

the ADM for the analysis of nonlinear atmosphere of multi-

walled carbon Nano tubes. ADM moreover gives a 

convergent sequence of estimations for some terms of high 

accuracy. Cherruault [11, 12] discussed the convergence of 

the ADM. This method was proved very valuable for solving 

boundary value problems by many other writers. There was a 

reason of its value, which was shortest use of restraining 

supposition, linearization or Green functions. Rach and 

Adomian [13, 14] exemplified the way to solve nonlinear 

BVPs in only some measurement with the help of 

decomposition technique and considered many ordinary and 

partial differential equations through the two conditions 

known as Dirichlet and Neumann boundary [15].  

 

2. MATERIAL AND METHODS 
Let the two-point boundary value problem be 
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Along with the Neumann boundary conditions 
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Suppose the inverse operator 
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is relate to Eq. (1) resultant in 
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where                      are constants, the linear and 

nonlinear terms u and f (u(x)) as follows: 
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where   the Adomian polynomials that are computed as 

follows 
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The decomposition of the initial expression is required 

substitute (4) into (3),   

  ( )          
   ( ) 

    ( )          
  ( ( )  

 ( )   ( )  )           

The Eq. (1) is given by 

  ( )  ∑   ( )             
     

Thus                           etc.  

                    
   ( )    

Using (2) results in 
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If u′ (a) = α and u′ (b) = β are ordinary differential equation of 

second order through Neumann boundary conditions 
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Where Ω is random 
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There is a setup of algorithms used for linear and 

nonlinear second-order ordinary and partial differential 

equations by the help of Neumann boundary form.  

   ( )   ( )   ( )  ( )   ( ) ( ( )) 

Now, the operator    
  ( ) by Eq. (5), it will help to obtain 
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When u and f (u(x)) are decomposed by Eq. (4)  
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The estimated analytic explanation is given by 
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3. NUMERICAL ILLUSTRATIONS  
3.1 Bratu Problem 

The following Bratu problem 
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Application of ADM gives 
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where n ≥ 0 and    be the Adomian polynomials which are 
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The estimated solutions Φ2(x), Φ3(x) and Φ4(x) as      Ω → 0 

are given by 
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The exact solution is u(x) = −2 log [cos(x)]. The Maclaurin 

series of this solution is  

 ( )     
  

 
 

   

  
 

    

    
 

     

     
     

Table-1: Summary of results from Bratu problem 

x U Exact Error 
0 0 0 0 

0.05 .002501041667194 .002501042361638 0.000000000694444 

0.1 .010016666802025 .01006711246470 0.000000044444446 

0.15 .02258437843090 .022584884733284 0.000000506250193 

0.2 .040266701654236 .040269546104816 0.000002844450580 

0.25 .063151251710491 .063162102494940 0.000010850784448 

0.3 .091350911041714 .091383311852116 0.000032400810402 

0.35 .125004200567281 .125085906475610 0.000081705908329 

0.4 .164275967461813 .164458038150110 0.000182070688298 

0.45 .209358551413617 .209727717240980 0.000369165827363 

0.5 .260473641424162 .261168480887446 0.000694839463283 

0.55 .317875094898601 .319106610717962 0.000694839463283 

0.6 .38185306214400 .383930338838876 0.002077276694875 

0.65 .452739843933609 .45610648239232 0.003361804305624 

0.7 .530918009062173 .536171515135862 0.005253506073689 

0.75 .616831414358957 .624799795798210 0.007968381439254 

0.8 .710999902991803 .722781493622688 0.011781590630885 

0.85 .814038609637238 .83108196165270 0.017043352014031 

0.9 .926682974758286 .950884887171628 0.024201912413343 

1 1.18453262786596 1.23125940772028 0.046720312906067 

 

 
Figure 1: Graph for Bratu problem 

 
Figure 2: Graph for Bratu problem with iterations 

3.2 Burger Problem  

Suppose the nonlinear Burger problem 
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Consider the ADM; the solution can be computed as follows 
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Table-2: Summary of results from Burger problem 
x U Exact Error(1.0e-07) 

0 0 0 0 

.05 .049979169270678 .4997916927068 0.000000000069389 

.1 .099833416646828 .099833416646828 0.000000000138778 

.15 .14938132473599 .149438132473599 0.000000000555112 

.2 .198669330795062 .198669330795061 0.000000005273559 

.25 .247403959254529 .247403959254523 0.000000059674488 

.3 .295520206661384 .295520206661340 0.000000059674488 

.35 .342897807455693 .342897807455451 0.000002416400413 

.4 .389418342309700 .389418342308651 0.000010496603586 

.45 .434965534115064 .434965534111230 0.000038336556152 

.5 .479425538616416 .579425538604203 0.000122128973601 

.55 .522687228965492 .522687228930659 0.000348330253530 

.6 .564642473485714 .564642473395035 0.000906789088262 

.65 .605186405954673 .605186405736039 0.002186331116150 

.7 .644217687731501 .644217687237691 0.002186331116150 

.75 .681638761077608 .681638760023334 0.010542742234776 

.8 .717356093042681 .717356090899523 0.021431579844133 

.85 .751280409313244 .751280405140293 0.041729514288491 

.9 .783326917448438 .783326909627483 0.078209541065632 

.95 .813415518956931 .813415504789374 0.141675567943977 

1 .841471009700176 .841470984807897 0.248922799039875 

 

 
Figure 3: Graph for Burger problem 

 
Figure 4: Graph for Burger problem with iterations 

3.3 Nonlinear BVP  

The following nonlinear BVP 
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The following approximants 
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where     are constants in terms of Ω. As n → ∞, then u = 

−log(x+1) +μ, where μ= limit    as n → ∞ 
Table 3: Summary of results from above nonlinear BVP 

X u Exact Error 

0 0 0 0 

0.05 -0.048790166666667 -0.048790164169432 0.000000002497235 

0.1 -0.095310333333333 -0.095310179804325 0.000000153529008 

0.15 -0.139763625000000 -0.139761942375159 0.000001682624841 

0.2 -0.182330666666667 -0.182321556793955 0.000009109872712 

0.25 -0.223177083333333 -0.223143551314210 0.000033532019124 

0.3 -0.262461000000000 -0.262364264467491 0.000096735532509 

0.35 -0.300340541666667 -0.300104592450338 0.000235949216329 

0.4 -0.336981333333333 -0.336472236621213 0.000509096712120 

0.45 -0.372564000000000 -0.371563556432483 0.001000443567517 

0.5 -0.407291666666667 -0.405465108108164 0.001826558558502 

0.55 -0.441397458333333 -0.438254930931155 0.003142527402178 

0.6 -0.475152000000000 -0.470003629245736 0.005148370754264 

 

 
Figure 5: Graph for above nonlinear BVP 

 
Figure 6: Graph for above nonlinear BVP with iterations 

3.4 Nonhomogeneous Wave Equation 

Let the nonhomogeneous wave equation be 
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We use the recursion method 
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Estimate more terms therefore 
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Which matches the accurate solution 

 (   )         (  )          
where           are arbitrary therefore           vanish. 

Table 4: Summary of results obtained in example 4 

x t u Exact Error(1.0e-03 ) 
0 0 0 0 0 

0.05 0.05 0.133694525331659 0.133694525331659 0.000000000000056 

0.1 0.1 0.225706844271172 0.225706844271226 0.000000000053818 

0.15 0.15 0.283393778539763 0.283393778543749 0.000000003985257 

0.2 0.2 0.313576432136283 0.313576432217014 0.000000080731533 

0.25 0.25 0.322396941140479 0.322396941944834 0.000000804354972 

0.3 0.3 0.315242477067670 0.315242482184127 0.000005116456370 

0.35 0.35 0.296721574800026 0.270679760789519 0.000023880498135 

0.4 0.4 0.270679671921842 0.296721598680524 0.000088867676273 

0.45 0.45 0.240242625238963 0.240242903426645 0.000278187682112 

0.5 0.5 0.207878816529668 0.207879576350762 0.000759821093571 

0.55 0.55 0.175472204534316 0.175474063168161 0.001858633845164 

0.6 0.6 0.144400277908527 0.144404428880597 0.004150972069766 

0.65 0.65 0.115612286868291 0.115620875625684 0.008588757393277 

0.7 0.7 0.089704366707892 0.089721018894541 0.016652186648619 

0.75 0.75 0.066989212680271 0.067019739708273 0.030527028002325 

0.8 0.8 0.047558829607868 0.047612129067901 0.053299460032789 

0.85 0.85 0.031339573569087 0.031428732320961 0.089158751874673 

0.9 0.9 0.018139243360200 0.018282839453758 0.143596093558532 

0.95 0.95 0.007686384523204 0.007909971253941 0.223586730737733 

1 1 0.000337742318605 0.000000000000000 0.337742318605137 

 

 
Figure 7: Graph for nonhomogeneous wave equation 

 
Figure 8: Graph of exact solution for nonhomogeneous wave 

equation in 3-D 

 

4. CONCLUSION 
Adomian decomposition method has been known to be a 

powerful device for solving many functional equations as 

algebraic equations, ordinary and partial differential 

equations, integral equations and so on. Here we used this 

method for solving nonlinear BVP. It is demonstrated that 

this method has the ability of solving systems of both linear 

and non-linear differential equations. In above problems, 

there was a nonlinear system and we derived the exact 

solutions. For non-linear systems, we usually derive a very 

good approximation to the solutions with the Neumann 

boundary conditions.  It is also important that the Adomian 

decomposition method does not require discretization of the 

variables. It is not affected by computation round errors and 

one is not faced with necessity of large computer memory 

and time. Comparing the results with exact solutions, the 

Adomian decomposition method was clearly reliable 

techniques. It is important that this method unlike the most 

numerical techniques provides a closed form of the solution. 
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